抄録
In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs.
本文言語 | English |
---|---|
ページ(範囲) | 561-575 |
ページ数 | 15 |
ジャーナル | Stem Cell Reports |
巻 | 8 |
号 | 3 |
DOI | |
出版ステータス | Published - 2017 3 14 |
ASJC Scopus subject areas
- Biochemistry
- Genetics
- Developmental Biology
- Cell Biology