Self-Dual Codes and the Nonexistence of a Quasi-Symmetric 2-(37,9,8) Design with Intersection Numbers 1 and 3

Masaaki Harada, Akihiro Munemasa, Vladimir D. Tonchev

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We prove that a certain binary linear code associated with the incidence matrix of a quasi-symmetric 2-(37, 9, 8) design with intersection numbers 1 and 3 must be contained in an extremal doubly even self-dual code of length 40. Using the classification of extremal doubly even self-dual codes of length 40, we show that a quasi-symmetric 2-(37, 9, 8) design with intersection numbers 1 and 3 does not exist.

本文言語English
ページ(範囲)469-476
ページ数8
ジャーナルJournal of Combinatorial Designs
25
10
DOI
出版ステータスPublished - 2017 10

ASJC Scopus subject areas

  • 離散数学と組合せ数学

フィンガープリント

「Self-Dual Codes and the Nonexistence of a Quasi-Symmetric 2-(37,9,8) Design with Intersection Numbers 1 and 3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル