Scattering of Solutions of Nonlinear Klein-Gordon Equations in Higher Space Dimensions

Masayoshi Tsutsumi, Nakao Hayashi

研究成果: Article査読

4 被引用数 (Scopus)

抄録

The scattering theory for nonlinear Klein–Gordon equations has been developed by many authors (such as, Segal, Strauss, Reed, and others). This chapter aims to extend recent results of Strauss on low energy scattering. In general useful methods by which one attacks nonlinear hyperbolic problem are energy estimates, Lp–Lq (decay) estimates for linear problem, and estimates of nonlinearity in various function spaces (e.g., Sobolev spaces, Besov spaces). The methods employed in this chapter are the same. The difficulty is the suitable choice of the spaces in which solutions of Nonlinear Klein-Gordon Equation (NLKG) lie.

本文言語English
ページ(範囲)221-239
ページ数19
ジャーナルNorth-Holland Mathematics Studies
98
C
DOI
出版ステータスPublished - 1984 1 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Scattering of Solutions of Nonlinear Klein-Gordon Equations in Higher Space Dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル