Scale-invariant feature extraction by VQ-based local image descriptor

Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

SIFT (Scale Invariant Feature Transform) feature is identified as being invariant to common image deformations caused by the rotation, scaling, and illumination. In this paper, instead of using SIFT's smoothed weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for local image descriptor. Experimental results demonstrate that the VQ-based local descriptors are more robust to image deformations.

本文言語English
ホスト出版物のタイトル2008 International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA 2008
ページ1217-1222
ページ数6
DOI
出版ステータスPublished - 2008 12月 1
イベント2008 International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA 2008 - Vienna, Austria
継続期間: 2008 12月 102008 12月 12

出版物シリーズ

名前2008 International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA 2008

Other

Other2008 International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA 2008
国/地域Austria
CityVienna
Period08/12/1008/12/12

ASJC Scopus subject areas

  • 人工知能
  • 計算理論と計算数学
  • ソフトウェア
  • 制御およびシステム工学

フィンガープリント

「Scale-invariant feature extraction by VQ-based local image descriptor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル