Route-enabling graph orientation problems

Takehiro Ito, Yuichiro Miyamoto, Hirotaka Ono, Hisao Tamaki, Ryuhei Uehara

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

Given an undirected and edge-weighted graph G together with a set of ordered vertex-pairs, called st-pairs, we consider the problems of finding an orientation of all edges in G: min-sum orientation is to minimize the sum of the shortest directed distances between all st-pairs; and min-max orientation is to minimize the maximum shortest directed distance among all st-pairs. In this paper, we first show that both problems are strongly NP-hard for planar graphs even if all edge-weights are identical, and that both problems can be solved in polynomial time for cycles. We then consider the problems restricted to cacti, which form a graph class that contains trees and cycles but is a subclass of planar graphs. Then, min-sum orientation is solvable in polynomial time, whereas min-max orientation remains NP-hard even for two st-pairs. However, based on LP-relaxation, we present a polynomial-time 2-approximation algorithm for min-max orientation. Finally, we give a fully polynomial-time approximation scheme (FPTAS) for min-max orientation on cacti if the number of st-pairs is a fixed constant.

本文言語English
ホスト出版物のタイトルAlgorithms and Computation - 20th International Symposium, ISAAC 2009, Proceedings
ページ403-412
ページ数10
DOI
出版ステータスPublished - 2009
イベント20th International Symposium on Algorithms and Computation, ISAAC 2009 - Honolulu, HI, United States
継続期間: 2009 12 162009 12 18

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5878 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other20th International Symposium on Algorithms and Computation, ISAAC 2009
国/地域United States
CityHonolulu, HI
Period09/12/1609/12/18

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Route-enabling graph orientation problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル