Rotational motion of traveling spots in dissipative systems

Takashi Teramoto, Katsuya Suzuki, Yasumasa Nishiura

研究成果: Article査読

14 被引用数 (Scopus)

抄録

What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular to peanut shape. Rotational motion of spots can be produced by combining these instabilities in a class of three-component reaction-diffusion systems. Partial differential equations dynamics can be reduced to a finite-dimensional one by projecting it to slow modes. Such a reduction clarifies the bifurcational origin of rotational motion of traveling spots in two dimensions in close analogy to the normal form of 1:2 mode interactions.

本文言語English
論文番号046208
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
80
4
DOI
出版ステータスPublished - 2009 10月 20
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Rotational motion of traveling spots in dissipative systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル