Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study

Sonali Das, Ashok Jangam, Shanmukapriya Jayaprakash, Shibo Xi, Kus Hidajat, Keiichi Tomishige, Sibudjing Kawi

研究成果: Article査読

抄録

Sandwich structured core-shell Ni-Phyllosilicate@Ce1-xZrxO2 catalysts with high coke resistance and activity are reported for DRM. Optimal Zr loading (x = 0.05 – 0.1) in the Ce1-xZrxO2 shell is observed to significantly increase the intrinsic activity for DRM. Extensive catalyst characterization using HRTEM, XRD, TPR, O2-TPD, XPS, EXAFS and CO pulse chemisorption indicates that the enhancement in DRM activity upon Zr doping can be attributed to the increase in lattice oxygen mobility of the ceria-zirconia shell and stronger metal-support interaction with Ni. It is inferred from a rigorous kinetic and mechanism study that the lattice oxygen of Ce1-xZrxO2 not only participates in the oxidation of carbonaceous reaction intermediates but also facilitates the rate determining step of C[sbnd]H bond dissociation of CH4 on Ni by an oxygen-mediated dissociation pathway. The involvement of lattice oxygen in methane activation and dissociation manifests in the higher DRM activity of the Zr-doped catalyst with maximum oxygen storage capacity.

本文言語English
論文番号119998
ジャーナルApplied Catalysis B: Environmental
290
DOI
出版ステータスPublished - 2021 8 5

ASJC Scopus subject areas

  • Catalysis
  • Environmental Science(all)
  • Process Chemistry and Technology

フィンガープリント 「Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub> core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル