Rocket Observation of Sub-Relativistic Electrons in the Quiet Dayside Auroral Ionosphere

T. Namekawa, T. Mitani, K. Asamura, Y. Miyoshi, K. Hosokawa, Y. Ogawa, S. Saito, T. Hori, S. Sugo, O. Kawashima, S. Kasahara, R. Nomura, N. Yagi, M. Fukizawa, T. Sakanoi, Y. Saito, A. Matsuoka, I. Shinohara, Y. Fedorenko, A. NikitenkoC. Koehler

研究成果: Article査読

1 被引用数 (Scopus)

抄録

An energy spectrum of electrons from 180 to 550 keV precipitating into the dayside polar ionosphere was observed under a geomagnetically quiet condition (AE ≤ 100 nT, Kp = 1-). The observation was carried out at 73–184 km altitudes by the HEP instrument onboard the RockSat-XN sounding rocket that has been launched from Andøya, Norway. The observed energy spectrum of precipitating electrons follows a power law of −4.9 ± 0.4 and the electron flux does not vary much over the observation period (∼274.4 s). A nearby ground-based VLF receiver observation at Lovozero, Russia shows the presence of whistler-mode wave activities during the rocket observation. A few minutes before the RockSat-XN observation, POES18/MEPED observed precipitating electrons, which also suggest whistler-mode chorus wave activities at the location close to the rocket trajectory. A test-particle simulation for wave-particle interactions was carried out using the data of the Arase satellite as the initial condition which was located on the duskside. The result of the simulation shows that whistler-mode waves can resonate with sub-relativistic electrons at high latitudes. These results suggest that the precipitation observed by RockSat-XN is likely to be caused by the wave-particle interactions between whistler-mode waves and sub-relativistic electrons.

本文言語English
論文番号e2020JA028633
ジャーナルJournal of Geophysical Research: Space Physics
126
7
DOI
出版ステータスPublished - 2021 7月

ASJC Scopus subject areas

  • 宇宙惑星科学
  • 地球物理学

フィンガープリント

「Rocket Observation of Sub-Relativistic Electrons in the Quiet Dayside Auroral Ionosphere」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル