Reverse mathematics and order theoretic fixed point theorems

Takashi Sato, Takeshi Yamazaki

研究成果: Article査読

抄録

The theory of countable partially ordered sets (posets) is developed within a weak subsystem of second order arithmetic. We within RCA0 give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over RCA0. Then we within RCA0 give proofs of Knaster–Tarski fixed point theorem, Tarski–Kantorovitch fixed point theorem, Bourbaki–Witt fixed point theorem, and Abian–Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian–Brown least fixed point theorem, Davis’ converse for countable lattices, Markowski’s converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over RCA0. Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.

本文言語English
ページ(範囲)385-396
ページ数12
ジャーナルArchive for Mathematical Logic
56
3-4
DOI
出版ステータスPublished - 2017 5 1

ASJC Scopus subject areas

  • 哲学
  • 論理

フィンガープリント

「Reverse mathematics and order theoretic fixed point theorems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル