Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation

Yasuhide Fukumoto, Makoto Hirota, Youichi Mie

研究成果: Chapter

1 被引用数 (Scopus)

抄録

This chapter provides an outline of the link of the wave energy, in the context of Kelvin waves confined in a circular cylinder, with a derivative of the dispersion relation. The chapter begins with a concise description of derivation of the wave energy using the Lagrangian displacement field. The authors briefly recall the Kelvin waves, a family of neutrally stable linear oscillations, in a confined geometry. They take, as a basic flow, the rigid-body rotation of an inviscid incompressible fluid confined in a cylinder of circular cross-section and of unit radius. The chapter establishes the relation of the formula of the wave energy with a derivative of the dispersion relation with respect to the frequency. Finally, it discusses the derivation of the mean flow induced by the nonlinear interactions of Kelvin waves and their utility for deriving the amplitude equations to third order.

本文言語English
ホスト出版物のタイトルNonlinear Physical Systems
ホスト出版物のサブタイトルSpectral Analysis, Stability and Bifurcations
出版社Wiley-Blackwell
ページ139-153
ページ数15
9781848214200
ISBN(電子版)9781118577608
ISBN(印刷版)9781848214200
DOI
出版ステータスPublished - 2013 12 31

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル