Reference Models for Lithospheric Geoneutrino Signal

S. A. Wipperfurth, O. Šrámek, W. F. McDonough

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk-silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local ((Formula presented.) 40%) and global ((Formula presented.) 35%) continental lithosphere and the underlying inaccessible mantle ((Formula presented.) 25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of (Formula presented.) 20%, proportionally with geophysical and geochemical inputs contributing (Formula presented.) 30% and (Formula presented.) 70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to (Formula presented.) 15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7 (Formula presented.) 2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5 (Formula presented.) 10.4 TW. Future improvements, including uncertainty attribution and near-field modeling, are discussed.

本文言語English
論文番号e2019JB018433
ジャーナルJournal of Geophysical Research: Solid Earth
125
2
DOI
出版ステータスPublished - 2020 2月 1

ASJC Scopus subject areas

  • 地球物理学
  • 地球化学および岩石学
  • 地球惑星科学(その他)
  • 宇宙惑星科学

フィンガープリント

「Reference Models for Lithospheric Geoneutrino Signal」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル