Recursive QR packet combining for uplink single-carrier multi-user MIMO HARQ using near ML detection

Tetsuya Yamamoto, Koichi Adachi, Sumei Sun, Fumiyuki Adachi

    研究成果: Conference contribution

    1 被引用数 (Scopus)

    抄録

    QR decomposition based near maximum likelihood (ML) block detection significantly improves the transmission performance of uplink single-carrier (SC) multi-user multiple-input multiple-output (MU-MIMO). Hybrid automatic repeat request (HARQ) is an indispensable error control technique for high quality packet data transmission. The achievable diversity gain of HARQ depends on the packet combining strategy. In uplink MU-MIMO HARQ, received signal may consist of new packets and retransmitted packets as retransmission for each user acts independently. In this paper, a recursive QR packet combining scheme suitable for uplink SC MU-MIMO HARQ is proposed, which takes into account the number of retransmissions for each user in the detection order. The proposed scheme helps reduce the computational complexity and storage requirement significantly. Moreover, it improves the packet error rate (PER) performance significantly over the conventional bit-level log likelihood ratio (LLR) packet combining, as shown by our computer simulation results.

    本文言語English
    ホスト出版物のタイトルIWCMC 2012 - 8th International Wireless Communications and Mobile Computing Conference
    ページ407-412
    ページ数6
    DOI
    出版ステータスPublished - 2012 11月 22
    イベント8th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2012 - Limassol, Cyprus
    継続期間: 2012 8月 272012 8月 31

    出版物シリーズ

    名前IWCMC 2012 - 8th International Wireless Communications and Mobile Computing Conference

    Other

    Other8th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2012
    国/地域Cyprus
    CityLimassol
    Period12/8/2712/8/31

    ASJC Scopus subject areas

    • コンピュータ ネットワークおよび通信

    フィンガープリント

    「Recursive QR packet combining for uplink single-carrier multi-user MIMO HARQ using near ML detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル