Reconfiguration of vertex covers in a graph

Takehiro Ito, Hiroyuki Nooka, Xiao Zhou

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Suppose that we are given two vertex covers C0 and Ct of a graph G, together with an integer threshold k ≥ max{|C0|, |Ct|}. Then, the vertex cover reconfiguration problem is to determine whether there exists a sequence of vertex covers of G which transforms C0 into Ct such that each vertex cover in the sequence is of cardinality at most k and is obtained from the previous one by either adding or deleting exactly one vertex. This problem is PSPACE-complete even for planar graphs. In this paper, we first give a linear-time algorithm to solve the problem for even-hole-free graphs, which include several well-known graphs, such as trees, interval graphs and chordal graphs. We then give an upper bound on k for which any pair of vertex covers in a graph G has a desired sequence. Our upper bound is best possible in some sense.

本文言語English
ホスト出版物のタイトルCombinatorial Algorithms - 25th International Workshop, IWOCA 2014, Revised Selected Papers
編集者Dalibor Froncek, Jan Kratochvíl, Mirka Miller
出版社Springer Verlag
ページ164-175
ページ数12
ISBN(電子版)9783319193144
DOI
出版ステータスPublished - 2015
イベント25th International Workshop on Combinatorial Algorithms, IWOCA 2014 - Duluth, United States
継続期間: 2014 10 152014 10 17

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8986
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other25th International Workshop on Combinatorial Algorithms, IWOCA 2014
国/地域United States
CityDuluth
Period14/10/1514/10/17

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Reconfiguration of vertex covers in a graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル