Random magnetic fields on line graphs

Fumihiko Nakano, Yuji Nomura

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We study the spectral and transport properties of Schrödinger operators on line graphs with random magnetic fields. We show that it has a pure point spectrum with exponentially decaying eigenfunctions on spectral edges, whereas there appears an eigenvalue with infinite multiplicity due to the structure of line graphs. We compute the electrical conductivity which is zero on spectral edges, but is nonzero and finite on the isolated eigenvalue mentioned above. Some related problems are also discussed.

本文言語English
ページ(範囲)4988-5002
ページ数15
ジャーナルJournal of Mathematical Physics
44
11
DOI
出版ステータスPublished - 2003 11

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Random magnetic fields on line graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル