Quasi-Cartesian finite-difference computation of seismic wave propagation for a three-dimensional sub-global model 4. Seismology

Hiroshi Takenaka, Masanao Komatsu, Genti Toyokuni, Takeshi Nakamura, Taro Okamoto

研究成果: Article査読

6 被引用数 (Scopus)

抄録

A simple and efficient finite-difference scheme is developed to calculate seismic wave propagation in a partial spherical shell model of a three-dimensionally (3-D) heterogeneous global Earth structure for modeling on regional or sub-global scales where the effects of the Earth's spherical geometry cannot be ignored. This scheme solves the elastodynamic equation in the quasi-Cartesian coordinate form similar to the local Cartesian one, instead of the spherical polar coordinate form, with a staggered-grid finite-difference method in time domain (FDTD) that is one of the most popular numerical methods in seismic-motion simulations for local-scale models. The proposed scheme may be a local-friendly approach for modeling on a sub-global scale to link regional-scale and local-scale simulations. It can be easily implemented using an available 3-D Cartesian FDTD local-scale modeling code by changing a very small part of the code. We implement the scheme in an existing Cartesian FDTD code and demonstrate the accuracy and validity of the present scheme and the feasibility to apply it to real large simulations through numerical examples.[Figure not available: see fulltext.]

本文言語English
論文番号67
ジャーナルearth, planets and space
69
1
DOI
出版ステータスPublished - 2017 12 1

ASJC Scopus subject areas

  • 地質学
  • 宇宙惑星科学

フィンガープリント

「Quasi-Cartesian finite-difference computation of seismic wave propagation for a three-dimensional sub-global model 4. Seismology」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル