Quantum Monte Carlo and Numerical Renormalization Group Studies of Magnetic Impurities in Nonmetallic Systems

Katsuhiko Takegahara, Yukihiro Shimizu, Osamu Sakai

研究成果: Article査読

28 被引用数 (Scopus)

抄録

We study magnetic properties of a single-impurity Anderson model in the symmetric case, in which the density of states for conduction electrons vanishes in a finite energy gap containing the Fermi energy. A quantum Monte Carlo simulation at finite temperatures and low-energy excitations calculated by a numerical renormalization group method reveal that at low temperatures the impurity magnetic susceptibility follows Curie's law. This behavior is consistent that the ground state is a doublet. The low-temperature Curie constant decreases monotonically with decreasing energy gap and the critical point is the zero gap. In the narrow gap limit, the impurity g-value of the doublet state is proportional to the gap width. This situation is due to the special feature of the symmetric case.

本文言語English
ページ(範囲)3443-3446
ページ数4
ジャーナルjournal of the physical society of japan
61
10
DOI
出版ステータスPublished - 1992 10

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「Quantum Monte Carlo and Numerical Renormalization Group Studies of Magnetic Impurities in Nonmetallic Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル