Quantitative prediction of environmentally assisted cracking based on a theoretical model and computer simulation

T. Satoh, T. Nakazato, S. Moriya, S. Suzuki, T. Shoji

研究成果: Article査読

12 被引用数 (Scopus)


This paper describes a comparison between quantitative prediction of environmentally assisted cracking by theoretical modelling and that by finite element method (FEM) computer simulation in terms of film rupture strain at a crack tip. The crack growth rate was simulated on a 1T-CT (one inch-thick compact tension) specimen, which met American Society for Testing and Materials (ASTM) E813, under the slow strain rate test (SSRT) condition by an FEM simulation code, Finite Element Environmentally Assisted Cracking Simulator (FEEACS) for film rupture strain εf = 10-2, 10-3, and 10-4. As the theoretical model includes unknown parameters which cannot be determined theoretically, they were evaluated by chi-square fitting method so that the crack growth rates of the theoretical model fit those of FEM computer simulation. In this method the film rupture strain εf and the position r where crack tip strain is defined are evaluated. The calculation was carried out for two cases. One is for irradiation-assisted stress corrosion cracking (IASCC), and the other is without irradiation. Parameters for irradiated material are the yield strength σy = 980 MN/m3/2, the slope of the current decay m = 0.5, and the strain hardening exponent n = 3. In the irradiated case the crack growth rates obtained by the theory agree well with those obtained by FEM using the relation εf Theory = 3.1εf FEM, while they do not agree in the case without irradiation.

ジャーナルJournal of Nuclear Materials
出版ステータスPublished - 1998 10

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 材料科学(全般)
  • 原子力エネルギーおよび原子力工学


「Quantitative prediction of environmentally assisted cracking based on a theoretical model and computer simulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。