Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM

Xue He, Tetsuo Shoji

研究成果: Article査読

33 被引用数 (Scopus)

抄録

The quantitative prediction of environmentally assisted cracking (EAC) or stress corrosion cracking (SCC) is essential in order to predict service life and also the structural integrity and safety assessment of light water reactors. During the last 3 decades many of the research results obtained on the quantitative prediction of the EAC crack growth rate have been based on linear fracture mechanics. In order to investigate EAC behavior in the high strain zone of important structures in light water reactors, the approach taken in this paper is one in which quantitative calculations of the EAC crack growth rate, incorporating the SCC deformation /oxidation model and the elastic-plastic finite element method (EPFEM), are carried o.ut. This approach can be used for the quantitative prediction of EAC crack growth rate in both the low and high strain zones of key structures in light water reactors. The crack growth behavior of sensitized type 304 stainless steel with a IT-CT specimen in simulated boiling water reactor (BWR) environments is analyzed based on this approach. The effect of several environmental, material, and mechanical parameters on the EAC crack growth rate of nickel based alloys in high-temperature aqueous environments is also discussed.

本文言語English
ページ(範囲)460-467
ページ数8
ジャーナルJournal of Pressure Vessel Technology, Transactions of the ASME
129
3
DOI
出版ステータスPublished - 2007 8 1

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Mechanics of Materials
  • Mechanical Engineering

フィンガープリント 「Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル