Quantitative estimates on localized finite differences for the fractional poisson problem, and applications to regularity and spectral stability

Goro Akagi, Giulio Schimperna, Antonio Segatti, Laura V. Spinolo

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We establish new quantitative estimates for localized finite differences of solutions to the Poisson problem for the fractional Laplace operator with homogeneous Dirichlet conditions of solid type settled in bounded domains satisfying the Lipschitz cone regularity condition. We then apply these estimates to obtain (i) regularity results for solutions of fractional Poisson problems in Besov spaces; (ii) quantitative stability estimates for solutions of fractional Poisson problems with respect to domain perturbations; (iii) quantitative stability estimates for eigenvalues and eigenfunctions of fractional Laplace operators with respect to domain perturbations.

本文言語English
ページ(範囲)913-961
ページ数49
ジャーナルCommunications in Mathematical Sciences
16
4
DOI
出版ステータスPublished - 2018

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Quantitative estimates on localized finite differences for the fractional poisson problem, and applications to regularity and spectral stability」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル