Quantifying force networks in particulate systems

Miroslav Kramár, Arnaud Goullet, Lou Kondic, Konstantin Mischaikow

研究成果: Article査読

38 被引用数 (Scopus)

抄録

We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks.

本文言語English
ページ(範囲)37-55
ページ数19
ジャーナルPhysica D: Nonlinear Phenomena
283
DOI
出版ステータスPublished - 2014 8月 15
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 凝縮系物理学
  • 応用数学

フィンガープリント

「Quantifying force networks in particulate systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル