TY - JOUR
T1 - Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells
AU - Maruyama, Yoshio
AU - Petersen, O. H.
AU - Flanagan, P.
AU - Pearson, G. T.
PY - 1983/12/1
Y1 - 1983/12/1
N2 - Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity1-4. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport5. Using patch-clamp methods6,7 to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration ([Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10-8 and 10-7 M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion 5,8.
AB - Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity1-4. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport5. Using patch-clamp methods6,7 to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration ([Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10-8 and 10-7 M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion 5,8.
UR - http://www.scopus.com/inward/record.url?scp=0020644040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020644040&partnerID=8YFLogxK
U2 - 10.1038/305228a0
DO - 10.1038/305228a0
M3 - Article
C2 - 6310413
AN - SCOPUS:0020644040
SN - 0028-0836
VL - 305
SP - 228
EP - 232
JO - Nature
JF - Nature
IS - 5931
ER -