Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm

Samaneh Yazdani, Atsuko Kasajima, Yoshiaki Onodera, Keely May McNamara, Kazue Ise, Yasuhiro Nakamura, Tomoyoshi Tachibana, Fuyuhiko Motoi, Michiaki Unno, Hironobu Sasano

研究成果: Article査読

4 被引用数 (Scopus)

抄録

In pancreatic neuroendocrine neoplasms (Pan-NEN) progesterone signaling has been shown to have both inhibitory and stimulatory effects on cell proliferation. The ability of progesterone to inhibit tumor proliferation is of particular interest and is suggested to be mediated through the less abundantly expressed progesterone receptor (PR) isoform A (PRA). To date the mechanistic processes underlying this inhibition of proliferation remain unclear. To examine the mechanism of PRA actions, the human Pan-NEN cell line QGP-1, that endogenously expresses PR isoform B (PRB) without PRA, was transfected with PRA. PRA transfection suppressed the majority of cell cycle related genes increased by progesterone including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2). Importantly, following progesterone administration cell cycle distribution was shifted to S and G2/M phases in the naïve cell line but in PRA-transfected cells, this effect was suppressed. To see if these mechanistic insights were confirmed in patient samples PRA, PRB, CCNA2, CCNB, CDK1 and CDK2 immunoreactivities were assessed in Pan-NEN cases. Higher levels of cell cycle markers were associated with higher WHO grade tumors and correlations between the markers suggested formation of cyclin/CDK activated complexes in S and G2/M phases. PRA expression was associated with inverse correlation of all cell cycle markers. Collectively, these results indicate that progesterone signals through PRA negatively regulates cell cycle progression through suppressing S and G2/M phases and downregulation of cell cycle phases specific cyclins/CDKs.

本文言語English
ページ(範囲)243-253
ページ数11
ジャーナルJournal of Steroid Biochemistry and Molecular Biology
178
DOI
出版ステータスPublished - 2018 4

ASJC Scopus subject areas

  • 内分泌学、糖尿病および代謝内科学
  • 生化学
  • 分子医療
  • 分子生物学
  • 内分泌学
  • 臨床生化学
  • 細胞生物学

フィンガープリント

「Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル