Probe localization from ultrasound image sequences using deep learning for volume reconstruction

Kanta Miura, Koichi Ito, Takafumi Aoki, Jun Ohmiya, Satoshi Kondo

研究成果: Conference contribution

抄録

We propose a probe localization method only from ultrasound (US) image sequences using deep learning for three-dimensional (3D) US image reconstruction. The proposed method employs a convolutional neural network (CNN) to estimate the motion of the probe from two US images. Our CNN architecture consists of two parts: inplane and out-of-plane probe motion estimation. Two loss functions are introduced to guarantee the consistency of estimated motion of the probe between multiple frames. Through experiments, we demonstrate that the proposed method exhibits efficient performance on probe localization compared with the conventional method.

本文言語English
ホスト出版物のタイトルInternational Forum on Medical Imaging in Asia 2021
編集者Ruey-Feng Chang
出版社SPIE
ISBN(電子版)9781510644205
DOI
出版ステータスPublished - 2021
イベントInternational Forum on Medical Imaging in Asia 2021, IFMIA 2021 - Taipei, Taiwan, Province of China
継続期間: 2021 1 242021 1 26

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
11792
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

Conference

ConferenceInternational Forum on Medical Imaging in Asia 2021, IFMIA 2021
国/地域Taiwan, Province of China
CityTaipei
Period21/1/2421/1/26

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Probe localization from ultrasound image sequences using deep learning for volume reconstruction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル