Probabilistic generalization of simple grammars and its application to reinforcement learning

Takeshi Shibata, Ryo Yoshinaka, Takashi Chikayama

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Recently, some non-regular subclasses of context-free grammars have been found to be efficiently learnable from positive data. In order to use these efficient algorithms to infer probabilistic languages, one must take into account not only equivalences between languages but also probabilistic generalities of grammars. The probabilistic generality of a grammar G is the class of the probabilistic languages generated by probabilistic grammars constructed on G. We introduce a subclass of simple grammars (SGs), referred as to unifiable simple grammars (USGs), which is a superclass of an efficiently learnable class, right-unique simple grammars (RSGs). We show that the class of RSGs is unifiable within the class of USGs, whereas SGs and RSGs are not unifiable within the class of SGs and RSGs, respectively. We also introduce simple context-free decision processes, which are a natural extension of finite Markov decision processes and intuitively may be thought of a Markov decision process with stacks. We propose a reinforcement learning method on simple context-free decision processes, as an application of the learning and unification algorithm for RSGs from positive data.

本文言語English
ホスト出版物のタイトルAlgorithmic Learning Theory - 17th International Conference, ALT 2006, Proceedings
出版社Springer-Verlag
ページ348-362
ページ数15
ISBN(印刷版)3540466495, 9783540466499
出版ステータスPublished - 2006 1 1
外部発表はい
イベント17th International Conference on Algorithmic Learning Theory, ALT 2006 - Barcelona, Spain
継続期間: 2006 10 72006 10 10

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4264 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other17th International Conference on Algorithmic Learning Theory, ALT 2006
国/地域Spain
CityBarcelona
Period06/10/706/10/10

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Probabilistic generalization of simple grammars and its application to reinforcement learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル