Piezoactuator-integrated monolithic microstage with six degrees of freedom

De Yuan Zhang, Takahito Ono, Masayoshi Esashi

研究成果: Article査読

35 被引用数 (Scopus)

抄録

In comparison with miniature XY-stages in term of driving methods: electrostatic, electromagnetic and piezoelectric actuators, the piezoelectric actuators have high area efficiency but no machinability by conventional microfabrication techniques. In this paper we have proposed the novel fabrication method of a double-layered piezo-stack actuator made from a monolithic PZT plate based on a planar fabrication method, and integrated the actuators into an XYZ-stage with six degrees of freedom, i.e., X, Y, Z, θx, θy and θz directions. The stacked piezoactuators were formed on both sides of the PZT plate. The double stacked-piezoactuators, which are arranged around the stage, can stretch in plane or bend to Z-direction. The fabrication method includes dicing, electroplating, and laser machining. After making grooves by dicing, metal electroplating was performed and buried Ni into the grooves, which was done on both sides of the PZT plate. After polishing the surface, metal electrodes were formed on an insulating photosensitive polyimide layer. Finally, the complete structure was defined by laser machining. The test results show that the X-direction displacement of the actuation arms was about 2 μm when 40 V was applied to both of double-layered piezo-stacked actuators. The Z-direction displacement of the actuation beam was about 2 μm when 40 V was only applied to one stacked actuator. These results show the possibility of the microstage with six degrees of freedom.

本文言語English
ページ(範囲)301-306
ページ数6
ジャーナルSensors and Actuators, A: Physical
122
2
DOI
出版ステータスPublished - 2005 8 26

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 器械工学
  • 凝縮系物理学
  • 表面、皮膜および薄膜
  • 金属および合金
  • 電子工学および電気工学

フィンガープリント

「Piezoactuator-integrated monolithic microstage with six degrees of freedom」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル