Persistence of common topological structures by commutative triple ladder quiver

Emerson G. Escolar, Yasuaki Hiraoka

研究成果: Conference contribution

抄録

This is a summary paper of Escolar and Hiraoka (Persistence modules on commutative ladders of finite type. Discrete Comput Geom 55, 100-157 (2016)) which presents an extension of persistence modules as representations on quivers with nontrivial relations. In particular, the mathematical and algorithmic results in that paper enable us to detect robust and common topological structures of two geometric objects. In this paper, we only deal with a special type of persistencemodules defined on the so-called commutative triple ladder for the sake of simplicity.We aim to explain the essence of Auslander-Reiten theory in connection with persistence modules.

本文言語English
ホスト出版物のタイトルMathematical Challenges in a New Phase of Materials Science
編集者Yasumasa Nishiura, Motoko Kotani
出版社Springer New York LLC
ページ69-82
ページ数14
ISBN(印刷版)9784431561026
DOI
出版ステータスPublished - 2016
イベントInternational Conference on Mathematical Challenges in a New Phase of Materials Science, 2014 - Kyoto, Japan
継続期間: 2014 8月 42014 8月 8

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
166
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Other

OtherInternational Conference on Mathematical Challenges in a New Phase of Materials Science, 2014
国/地域Japan
CityKyoto
Period14/8/414/8/8

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Persistence of common topological structures by commutative triple ladder quiver」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル