Persistence Modules on Commutative Ladders of Finite Type

Emerson G. Escolar, Yasuaki Hiraoka

研究成果: Article査読

9 被引用数 (Scopus)

抄録

We study persistence modules defined on commutative ladders. This class of persistence modules frequently appears in topological data analysis, and the theory and algorithm proposed in this paper can be applied to these practical problems. A new algebraic framework deals with persistence modules as representations on associative algebras and the Auslander–Reiten theory is applied to develop the theoretical and algorithmic foundations. In particular, we prove that the commutative ladders of length less than 5 are representation-finite and explicitly show their Auslander–Reiten quivers. Furthermore, a generalization of persistence diagrams is introduced by using Auslander–Reiten quivers. We provide an algorithm for computing persistence diagrams for the commutative ladders of length 3 by using the structure of Auslander–Reiten quivers.

本文言語English
ページ(範囲)100-157
ページ数58
ジャーナルDiscrete and Computational Geometry
55
1
DOI
出版ステータスPublished - 2016 1 1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー
  • 離散数学と組合せ数学
  • 計算理論と計算数学

フィンガープリント

「Persistence Modules on Commutative Ladders of Finite Type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル