Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn-Cr)AlGe films fabricated onto thermally oxidized silicon substrates

研究成果: Article査読

抄録

Perpendicularly magnetized films exhibiting small saturation magnetizations (Ms) are essential for spin-transfer-torque magnetoresistive random access memories (MRAMs). In this study, the intermetallic compound (Mn-Cr)AlGe with a Cu2Sb crystal structure was investigated as a material exhibiting low Ms (∼300 kA/m) and high-perpendicular magnetic anisotropy energy (Ku). The layer thickness dependence of Ku and effects of Mg-insertion layers at the top and bottom (Mn-Cr)AlGe|MgO interfaces were studied for film samples fabricated onto thermally oxidized silicon substrates to realize high Ku values in the thickness range of a few nanometers. The values of Ku were approximately 7×105 and 2×105 J/m3 at room temperature for 5 and 3 nm-thick (Mn-Cr)AlGe films, respectively, with an optimum annealing temperature of 400 °C and Mg-insertion thicknesses of 1.4 and 3.0 nm for the top and bottom interfaces, respectively. The Mg insertions were relatively thick compared with results of similar studies of the insertion effect on magnetic tunnel junctions. Cross-sectional transmission electron microscope images revealed that the Mg-insertion layers acted as barriers to the interdiffusion of Al atoms as well as oxidization from the MgO layers. The Ku at a few-nanometer thicknesses was comparable to or higher than those reported for perpendicularly magnetized CoFeB films, which are conventionally used in MRAMs, whereas the Ms value was one third or smaller than those of the CoFeB films. The developed (Mn-Cr)AlGe films are promising materials because of their magnetic properties and their compatibility to the silicon process in film fabrication.

本文言語English
論文番号262404
ジャーナルApplied Physics Letters
118
26
DOI
出版ステータスPublished - 2021 6 28

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「Perpendicular magnetic anisotropy in ultra-thin Cu<sub>2</sub>Sb-type (Mn-Cr)AlGe films fabricated onto thermally oxidized silicon substrates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル