Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap 1, a transcription factor in budding yeast

Shoko Okazaki, Akira Naganuma, Shusuke Kuge

研究成果: Article査読

72 被引用数 (Scopus)

抄録

A redox reaction involving cysteine thiol-disulfide exchange is crucial for the intracellular monitoring of oxidation status. The yeast transcription factor Yap1 is activated by formation of a disulfide bond, which inhibits nuclear export in response to peroxide stress, with resultant enhancement of the nuclear localization of Yap1. A glutathione peroxidase-like protein, Gpx3, which has peroxiredoxin activity, is required for formation of the disulfide bond in Yap1. We show here that the requirement for Gpx3 in the regulation of Yap1 is strain-specific. Thus, Tsa1, a ubiquitous thioredoxin peroxidase, is required for the activation of Yap1 in yeast strain Y700, which is derived from W303. The strain-specific utilization of different peroxiredoxins appears to be determined by Ybp1, a Yap1-binding protein. The Ybp1 of Y700 has a nonsense mutation, and a wild-type YBP1 gene can restore the Gpx3-dependent activation of Yap1. These results suggest that Tsa1, a ubiquitous peroxiredoxin, has the potential for transducing redox signals to a particular sensor protein.

本文言語English
ページ(範囲)327-334
ページ数8
ジャーナルAntioxidants and Redox Signaling
7
3-4
DOI
出版ステータスPublished - 2005 3月

ASJC Scopus subject areas

  • 生化学
  • 生理学
  • 分子生物学
  • 臨床生化学
  • 細胞生物学

フィンガープリント

「Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap 1, a transcription factor in budding yeast」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル