Permeability-porosity relation and preferential flow in heterogeneous vuggy carbonates

Hikaru Kusanagi, Noriaki Watanabe, Takashi Shimazu, Masahiko Yagi

研究成果: Paper査読

2 被引用数 (Scopus)


The present study investigates fluid flows and permeabilities through vuggy carbonates via a single-phase fluid-flow experiment and a numerical model simulation using X-ray CT. 3D imaging of flow paths in vuggy carbonate samples reveals that fluid flows through vuggy carbonates are generally characterized by the formation of preferential flow paths due to heterogeneous porosity distributions within the rocks. Only a part of pores (typically <50% of the total pore volume) effectively contributes to the flow, while the other pores contain stagnant fluids. Histograms of local porosity for all samples are characterized by lognormal distributions with different geometric mean, mφ (fraction), and standard deviation, σφ, values, depending on the heterogeneities of the rocks. Percentage of the pore volume that effectively contributes to the flow over the total pore volume, VF, which results from the formation of preferential flow paths, linearly decreases with increasing the geometric standard deviation, i.e. intensity of formation of vug pores or spatial correlation of pores: VF = -155σφ + 255. Global permeabilities of the samples are not related to their He porosities, unlike those of non-vuggy carbonates, because of the fact that a part of pores contributes to the flows. In case of vuggy carbonates, the global permeability, K (m2), is a function of both the geometric mean and standard deviation values, where the larger geometric mean and standard deviation values are, the higher the global permeability is. A new permeability-porosity relation of vuggy carbonates, in addition to the existing class I-III relations of non-vuggy carbonates, namely class IV (four) relation is found to be described as K = 4.573×10-10 ΦIV7.77, where ΦIV = mφ × σφ2 is a modified fractional porosity for vuggy carbonates having Interparticle and Vug (IV) porosities. This equation implies that the global permeability is higher for vuggy carbonates having more spatially correlated (σφ ) larger pores (mφ × σφ).

出版ステータスPublished - 2015 1 1
イベント21st Formation Evaluation Symposium of Japan 2015 - Chiba, Japan
継続期間: 2015 10 132015 10 14


Other21st Formation Evaluation Symposium of Japan 2015

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 経済地質学
  • 地球化学および岩石学
  • 地盤工学および土木地質学
  • 地質学


「Permeability-porosity relation and preferential flow in heterogeneous vuggy carbonates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。