Performance improvement of magnet temperature estimation using kernel method based non-linear parameter estimator for variable leakage flux ipmsms

Atsushi Okada, Ami S. Koshikawa, Kouki Yonaga, Kensuke Sasaki, Takashi Kato, Masayuki Ohzeki

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This study proposes a novel approach that employs the kernel method as a regression model to demonstrate the dependency of magnet flux linkage on the applied current, which is suitable for magnet temperature estimation. This model can estimate the flux linkage with a mean relative error of less than 2% in comparison with that obtained using finite element analysis. The magnet temperature is estimated by comparing the magnet flux linkage under loading conditions with the values obtained from the regression models built under fixed temperatures. The accuracy of the results obtained using the magnet temperature estimation method is approximately the same as that of the results obtained using the look-up table, suggesting that the proposed approach is suitable for non-linear motor property modeling.

本文言語English
ページ(範囲)618-623
ページ数6
ジャーナルIEEJ Journal of Industry Applications
10
6
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 自動車工学
  • エネルギー工学および電力技術
  • 機械工学
  • 産業および生産工学
  • 電子工学および電気工学

フィンガープリント

「Performance improvement of magnet temperature estimation using kernel method based non-linear parameter estimator for variable leakage flux ipmsms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル