Performance improvement of Alzheimer's disease classification inspired by CNN in brain age estimation

研究成果: Conference contribution

抄録

Alzheimer's disease (AD) is a progressive brain disease that causes a different pattern of brain atrophy from normal aging. Early identification of AD is crucial since the progression of the disease can be slowed down by medication. In the field of image recognition, its accuracy has been significantly improved by using convolutional neural networks (CNNs). Similarly, in the field of medical image processing, researches on the diagnostic support using CNN have been studied. In this paper, we propose an AD classification method using CNN, inspired by the success of CNNs in brain age estimation. Through experiments using a large-scale database, we demonstrate the effectiveness of our proposed method.

本文言語English
ホスト出版物のタイトルInternational Forum on Medical Imaging in Asia 2021
編集者Ruey-Feng Chang
出版社SPIE
ISBN(電子版)9781510644205
DOI
出版ステータスPublished - 2021
イベントInternational Forum on Medical Imaging in Asia 2021, IFMIA 2021 - Taipei, Taiwan, Province of China
継続期間: 2021 1 242021 1 26

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
11792
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

Conference

ConferenceInternational Forum on Medical Imaging in Asia 2021, IFMIA 2021
国/地域Taiwan, Province of China
CityTaipei
Period21/1/2421/1/26

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Performance improvement of Alzheimer's disease classification inspired by CNN in brain age estimation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル