Partitioning a multi-weighted graph to connected subgraphs of almost uniform size

Takehiro Ito, Kazuya Goto, Xiao Zhou, Takao Nishizeki

研究成果: Conference contribution

抄録

Assume that each vertex of a graph G is assigned a constant number q of nonnegative integer weights, and that q pairs of nonnegative integers l i and ui, 1 ≤ i ≤ q, are given. One wishes to partition G into connected components by deleting edges from G so that the total i-th weights of all vertices in each component is at least li and at most ui for each index i, 1 ≤ i ≤ q. The problem of finding such a "uniform" partition is NP-hard for series-parallel graphs, and is strongly NP-hard for general graphs even for q = 1. In this paper we show that the problem and many variants can be solved in pseudo-polynomial time for series-parallel graphs. Our algorithms for series-parallel graphs can be extended for partial k-trees, that is, graphs with bounded tree-width.

本文言語English
ホスト出版物のタイトルComputing and Combinatorics - 12th Annual International Conference, COCOON 2006, Proceedings
出版社Springer Verlag
ページ63-72
ページ数10
ISBN(印刷版)3540369252, 9783540369257
DOI
出版ステータスPublished - 2006
イベント12th Annual International Conference on Computing and Combinatorics, COCOON 2006 - Taipei, Taiwan, Province of China
継続期間: 2006 8 152006 8 18

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4112 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other12th Annual International Conference on Computing and Combinatorics, COCOON 2006
国/地域Taiwan, Province of China
CityTaipei
Period06/8/1506/8/18

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Partitioning a multi-weighted graph to connected subgraphs of almost uniform size」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル