Partial identification of nonseparable models using binary instruments

研究成果: Article査読

抄録

In this study, we explore the partial identification of nonseparable models with continuous endogenous and binary instrumental variables. We show that the structural function is partially identified when it is monotone or concave in the explanatory variable. D'Haultfœuille and Février (2015, Econometrica 83(3), 1199-1210) and Torgovitsky (2015, Econometrica 83(3), 1185-1197) prove the point identification of the structural function under a key assumption that the conditional distribution functions of the endogenous variable for different values of the instrumental variables have intersections. We demonstrate that, even if this assumption does not hold, monotonicity and concavity provide identification power. Point identification is achieved when the structural function is flat or linear with respect to the explanatory variable over a given interval. We compute the bounds using real data and show that our bounds are informative.

本文言語English
ページ(範囲)817-848
ページ数32
ジャーナルEconometric Theory
37
4
DOI
出版ステータスPublished - 2021 8月
外部発表はい

ASJC Scopus subject areas

  • 社会科学(その他)
  • 経済学、計量経済学

フィンガープリント

「Partial identification of nonseparable models using binary instruments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル