Parallel implementation of motif-based clustering for HT-SELEX dataset

Takayoshi Ono, Shintaro Kato, Koichi Ito, Hirotaka Minagawa, Katsunori Horii, Ikuo Shiratori, Iwao Waga, Takafumi Aoki

研究成果: Conference contribution

抄録

A clustering method for high-throughput sequencing with SELEX pools (HT-SELEX) is crucial for selecting different types of aptamer candidates. The fast and accurate clustering method is indispensable for an enormous sequence data produced by HT-SELSEX. We have already developed a fast motif-based clustering (FMBC) method for HT-SELEX data implemented by R language. FMBC exhibited high accuracy of sequence clustering compared with conventional methods, while the processing time of FMBC is longer than AptaCluster. This paper proposes the parallel implementation of FMBC using Python with multi-threading to improve the performance of FMBC. Experimental evaluation using the NCBI SRA data of SRR3279661 from BioProject PRJNA315881 demonstrated that parallel FMBC exhibited higher accuracy of clustering and shorter processing time than conventional methods.

本文言語English
ホスト出版物のタイトルProceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ50-55
ページ数6
ISBN(電子版)9781728146171
DOI
出版ステータスPublished - 2019 10
イベント19th International Conference on Bioinformatics and Bioengineering, BIBE 2019 - Athens, Greece
継続期間: 2019 10 282019 10 30

出版物シリーズ

名前Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019

Conference

Conference19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
CountryGreece
CityAthens
Period19/10/2819/10/30

ASJC Scopus subject areas

  • Information Systems
  • Biomedical Engineering
  • Health Informatics

フィンガープリント 「Parallel implementation of motif-based clustering for HT-SELEX dataset」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル