Packing trominoes is np-complete, #p-complete and asp-complete

Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki, Ryuhei Uehara

研究成果: Paper査読

3 被引用数 (Scopus)

抄録

We study the computational complexity of packing puzzles of identical polyominoes. Packing dominoes (i.e., 1 × 2 rectangles) into grid polygons can be solved in polynomial time by reducing to a bipartite matching problem. On the other hand, packing 2 × 2 squares is known to be NP-complete. In this paper, we fill the gap between dominoes and 2 × 2 squares, that is, we consider the packing puzzles of trominoes. Note that there exist only two shapes of trominoes: L-shape and I-shape. We show that their packing problems are both NP-complete. Our reductions are carefully designed so that we can also prove #P-completeness and ASPcompleteness of the counting and the another- solutionproblem variants, respectively.

本文言語English
ページ211-216
ページ数6
出版ステータスPublished - 2012 12 1
イベント24th Canadian Conference on Computational Geometry, CCCG 2012 - Charlottetown, PE, Canada
継続期間: 2012 8 82012 8 10

Other

Other24th Canadian Conference on Computational Geometry, CCCG 2012
国/地域Canada
CityCharlottetown, PE
Period12/8/812/8/10

ASJC Scopus subject areas

  • 計算数学
  • 幾何学とトポロジー

フィンガープリント

「Packing trominoes is np-complete, #p-complete and asp-complete」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル