Orthogonal drawings of series-parallel graphs with minimum bends

Xiao Zhou, Takao Nishizeki

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

In an orthogonal drawing of a planar graph G, each vertex is drawn as a point, each edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges do not cross except at their common end. A bend is a point where an edge changes its direction. A drawing of G is called an optimal orthogonal drawing if the number of bends is minimum among all orthogonal drawings of G. In this paper we give an algorithm to find an optimal orthogonal drawing of any given series-parallel graph of the maximum degree at most three. Our algorithm takes linear time, while the previously known best algorithm takes cubic time. Furthermore, our algorithm is much simpler than the previous one. We also obtain a best possible upper bound on the number of bends in an optimal drawing.

本文言語English
ホスト出版物のタイトルAlgorithms and Computation - 16th International Symposium, ISAAC 2005, Proceedings
出版社Springer Verlag
ページ166-175
ページ数10
ISBN(印刷版)3540309357, 9783540309352
DOI
出版ステータスPublished - 2005
イベント16th International Symposium on Algorithms and Computation, ISAAC 2005 - Hainan, China
継続期間: 2005 12 192005 12 21

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3827 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other16th International Symposium on Algorithms and Computation, ISAAC 2005
国/地域China
CityHainan
Period05/12/1905/12/21

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Orthogonal drawings of series-parallel graphs with minimum bends」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル