Optimization of phosphor concentration of surface‐modified Bi2O3 nanoparticle‐loaded plastic scintillators for high‐energy photon detection

Arisa Magi, Masanori Koshimizu, Akito Watanabe, Akira Yoko, Gimyeong Seong, Takaaki Tomai, Tadafumi Adschiri, Rie Haruki, Fumihiko Nishikido, Shunji Kishiomto, Yutaka Fujimoto, Keisuke Asai

研究成果: Article査読


In this study, the 3-phenylpropionic acid (3-PPA)-modified Bi2O3 nanoparticle-loaded plastic scintillators were synthesized to obtain fast scintillators having high detection efficiency of high-energy X-rays. To reach a high light yield, the content of 2-(4-tert-butylphenyl)-5-(4-phenylphenyl))-1,3,4-oxadiazole (b-PBD) in the plastic scintillators was optimized. The detection efficiency for high-energy photons was enhanced by the incorporation of surface-modified Bi2O3 nanoparticles of less than 10 nm into scintillators at 5 or 10 wt%. In the pulse-height spectra, the photoelectric peak positions were located at the highest channels for the samples containing 0.50 or 1.0 mol% b-PBD regardless of the Bi concentration. The photoelectric peak positions shifted to lower channels with a further increase in the b-PBD concentration, which indicates that the light yield decreased due to concentration quenching. In addition, the time resolution of the detector equipped with the studied samples was of the sub-nanosecond scale, suggesting that they had a very fast response.

ジャーナルJournal of Materials Science: Materials in Electronics
出版ステータスPublished - 2021 3

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 凝縮系物理学
  • 電子工学および電気工学


「Optimization of phosphor concentration of surface‐modified Bi<sub>2</sub>O<sub>3</sub> nanoparticle‐loaded plastic scintillators for high‐energy photon detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。