Optimal depth-first algorithms and equilibria of independent distributions on multi-branching trees

Weiguang Peng, Ning Ning Peng, Keng Meng Ng, Kazuyuki Tanaka, Yue Yang

研究成果: Article

4 被引用数 (Scopus)

抄録

The main purpose of this paper is to answer two questions about the distributional complexity of multi-branching trees. We first show that for any independent distribution d on assignments for a multi-branching tree, a certain directional algorithm DIRd is optimal among all the depth-first algorithms (including non-directional ones) with respect to d. We next generalize Suzuki–Niida's result on binary trees to the case of multi-branching trees. By means of this result and our optimal algorithm, we show that for any balanced multi-branching AND–OR tree, the optimal distributional complexity among all the independent distributions (ID) is (under an assumption that the probability of the root having value 0 is neither 0 nor 1) actually achieved by an independent and identical distribution (IID).

本文言語English
ページ(範囲)41-45
ページ数5
ジャーナルInformation Processing Letters
125
DOI
出版ステータスPublished - 2017 9

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Signal Processing
  • Information Systems
  • Computer Science Applications

フィンガープリント 「Optimal depth-first algorithms and equilibria of independent distributions on multi-branching trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル