Optical scanner based on a NiMnGa thin film microactuator

M. Kohl, S. Hoffmann, Y. Liu, M. Ohtsuka, T. Takagi

研究成果: Conference article査読

31 被引用数 (Scopus)


An optical scanner of 9 × 3 × 5 mm3 size is presented, which is driven by a microactuator of Ni2MnGa. The microactuator is fabricated by magnetron sputtering of a Ni2MnGa thin film and subsequent photochemical micromachining. For operation of the scanner, a novel mechanism is proposed, which is based on the antagonism of magnetic and shape recovery forces. Thus, large bending forces in both actuation directions and low biasing forces can be generated simultaneously in a single microdevice. This mechanism is used to realize a large scanning angle of 50 deg. The dynamics of motion is characterized by heat-transfer times. Typical heating and cooling time constants are 2 and 16 ms, respectively. Below a critical frequency of about 55 Hz, the scanning angle is independent of the actuation frequency.

ジャーナルJournal De Physique. IV : JP
112 II
出版ステータスPublished - 2003 10
イベントInternational Conference on Martensitic Transformations - Espoo, Finland
継続期間: 2002 6 102002 6 14

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「Optical scanner based on a NiMnGa thin film microactuator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。