Operator calculus on vector-valued white noise functionals

研究成果: Article査読

10 被引用数 (Scopus)

抄録

A general theory of operators on vector-valued white noise functionals is established in line with Hid′s white noise calculus. A basic role is played by an integral kernel operator which is a superposition of creation and annihilation operators with operator-valued distributions as integral kernel. The symbol of a continuous operator on vector-valued white noise functionals is characterized by its analyticity and boundedness. A significant consequence is that every continuous operator on vector-valued white noise functionals admits an infinite series expansion in terms of integral kernel operators with precise estimate of the convergence.

本文言語English
ページ(範囲)185-232
ページ数48
ジャーナルJournal of Functional Analysis
121
1
DOI
出版ステータスPublished - 1994 4
外部発表はい

ASJC Scopus subject areas

  • Analysis

フィンガープリント 「Operator calculus on vector-valued white noise functionals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル