On the rainbow connectivity of graphs: Complexity and FPT algorithms

Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, Xiao Zhou

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

For a graph G = (V,E) and a color set C, let f: E → C be an edge-coloring of G which is not necessarily proper. Then, the graph G edge-colored by f is rainbow connected if every two vertices of G has a path in which all edges are assigned distinct colors. Chakraborty et al. defined the problem of determining whether the graph colored by a given edge-coloring is rainbow connected. Chen et al. introduced the vertex-coloring version of the problem as a variant, and we introduce the total-coloring version in this paper. We settle the precise computational complexities of all the three problems from two viewpoints, namely, graph diameters and certain graph classes. We also give FPT algorithms for the three problems on general graphs when parameterized by the number of colors in C; these results imply that all the three problems can be solved in polynomial time for any graph with n vertices if |C| = O(logn).

本文言語English
ホスト出版物のタイトルComputing and Combinatorics - 17th Annual International Conference, COCOON 2011, Proceedings
ページ86-97
ページ数12
DOI
出版ステータスPublished - 2011
イベント17th Annual International Computing and Combinatorics Conference, COCOON 2011 - Dallas, TX, United States
継続期間: 2011 8月 142011 8月 16

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6842 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other17th Annual International Computing and Combinatorics Conference, COCOON 2011
国/地域United States
CityDallas, TX
Period11/8/1411/8/16

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「On the rainbow connectivity of graphs: Complexity and FPT algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル