On the hardness of approximating the minimum consistent OBDD problem

Kouichi Hirata, Shinichi Shimozono, Ayumi Shinohara

研究成果: Conference contribution

3 引用 (Scopus)

抜粋

Ordered binary decision diagrams (OBDDs, for short) represent Boolean functions as directed acyclic graphs. The minimum consistent OBDD problem is, given an incomplete truth table of a function, to find the smallest OBDD that is consistent with the truth table with respect to a fixed order of variables. We show that this problem is NP-hard, and prove that there is a constant ∊ > 0 such that no polynomial time algorithm can approximate the minimum consistent OBDD within the ratio n unless P=NP, where n is the number of variables. This result suggests that OBDDs are unlikely to be polynomial time learnable in PAC-learning model.

元の言語English
ホスト出版物のタイトルAlgorithm Theory - SWAT 1996 - 5th Scandinavian Workshop on Algorithm Theory, Proceedings
編集者Rolf Karlsson, Andrzej Lingas
出版者Springer Verlag
ページ112-123
ページ数12
ISBN(印刷物)3540614222, 9783540614227
DOI
出版物ステータスPublished - 1996
外部発表Yes
イベント5th Scandinavian Workshop on Algorithm Theory, SWAT 1996 - Reykjavik, Iceland
継続期間: 1996 7 31996 7 5

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1097
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

Other

Other5th Scandinavian Workshop on Algorithm Theory, SWAT 1996
Iceland
Reykjavik
期間96/7/396/7/5

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント On the hardness of approximating the minimum consistent OBDD problem' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Hirata, K., Shimozono, S., & Shinohara, A. (1996). On the hardness of approximating the minimum consistent OBDD problem. : R. Karlsson, & A. Lingas (版), Algorithm Theory - SWAT 1996 - 5th Scandinavian Workshop on Algorithm Theory, Proceedings (pp. 112-123). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 1097). Springer Verlag. https://doi.org/10.1007/3-540-61422-2_125