On the Hamiltonian minimality of normal bundles

Toru Kajigaya

研究成果: Conference contribution

抄録

A Hamiltonian minimal (shortly, H-minimal) Lagrangian submanifold in a Kähler manifold is a critical point of the volume functional under all compactly supported Hamiltonian deformations.We show that any normal bundle of a principal orbit of the adjoint representation of a compact simple Lie group G in the Lie algebra g of G is an H-minimal Lagrangian submanifold in the tangent bundle T g which is naturally regarded as Cm. Moreover, we specify these orbits with this property in the class of full irreducible isoparametric submanifolds in the Euclidean space.

本文言語English
ホスト出版物のタイトルReal and Complex Submanifolds
編集者Hyunjin Lee, Jürgen Berndt, Yoshihiro Ohnita, Byung Hak Kim, Young Jin Suh
出版社Springer New York LLC
ページ485-496
ページ数12
ISBN(電子版)9784431552147
DOI
出版ステータスPublished - 2014
イベントSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry - Daejeon, Korea, Republic of
継続期間: 2014 8月 102014 8月 12

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
106
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Other

OtherSatellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry
国/地域Korea, Republic of
CityDaejeon
Period14/8/1014/8/12

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the Hamiltonian minimality of normal bundles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル