On the freestream preservation of high-order conservative flux-reconstruction schemes

Yoshiaki Abe, Takanori Haga, Taku Nonomura, Kozo Fujii

研究成果: Article査読

19 被引用数 (Scopus)

抄録

The appropriate procedure for constructing the symmetric conservative metric is presented with which both the freestream preservation and global conservation properties are satisfied in the high-order conservative flux-reconstruction scheme on a three-dimensional stationary-curvilinear grid. A freestream preservation test is conducted, and the symmetric conservative metric constructed by the appropriate procedure preserves the freestream regardless of the order of shape functions, while other metrics cannot always preserve the freestream. Also a convecting vortex is computed on three-dimensional wavy grids, and the formal order of accuracy is achieved when the symmetric conservative metric is appropriately constructed, while it is not when they are inappropriately constructed. In addition, although the sufficient condition for the freestream preservation with the nonconservative (cross product form) metric was reported in the previous study to be that the order of solution polynomial has to be greater than or equal to the twice of the order of a shape function, a special case is newly found in the present study: when the Radau polynomial is used for the correction function, the freestream is preserved even if the solution order is lower than the known condition. Using the properties of Legendre polynomials, the mechanism for this special case is analytically explained, considering the cancellation of aliasing errors.

本文言語English
ページ(範囲)28-54
ページ数27
ジャーナルJournal of Computational Physics
281
DOI
出版ステータスPublished - 2015 1月 5
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • モデリングとシミュレーション
  • 物理学および天文学(その他)
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「On the freestream preservation of high-order conservative flux-reconstruction schemes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル