On the complexity of barrier resilience for fat regions and bounded ply

Matias Korman, Maarten Löffler, Rodrigo I. Silveira, Darren Strash

研究成果: Article査読

12 被引用数 (Scopus)

抄録

In the barrier resilience problem (introduced by Kumar et al., Wireless Networks 2007), we are given a collection of regions of the plane, acting as obstacles, and we would like to remove the minimum number of regions so that two fixed points can be connected without crossing any region. In this paper, we show that the problem is NP-hard when the collection only contains fat regions with bounded ply Δ (even when they are axis-aligned rectangles of aspect ratio 1:(1+ε)). We also show that the problem is fixed-parameter tractable (FPT) for unit disks and for similarly-sized β-fat regions with bounded ply Δ and O(1) pairwise boundary intersections. We then use our FPT algorithm to construct an (1+ε)-approximation algorithm that runs in O(2f(Δ,ε,β)n5) time, where f∈O([Formula presented]log⁡(βΔ/ε)).

本文言語English
ページ(範囲)34-51
ページ数18
ジャーナルComputational Geometry: Theory and Applications
72
DOI
出版ステータスPublished - 2018 6月

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 幾何学とトポロジー
  • 制御と最適化
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「On the complexity of barrier resilience for fat regions and bounded ply」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル