On Some Twistor Spaces Over 4ℂℙ2

Nobuhiro Honda

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We show that for any positive integer τ there exist on 4ℂℙ2, the connected sum of four complex projective planes, twistor spaces whose algebraic dimensions are two. Here, τ appears as the order of the normal bundle of C in S, where S is a real smooth half-anti-canonical divisor on the twistor space and C is a real smooth anti-canonical divisor on S. This completely answers the problem posed by Campana and Kreussler. Our proof is based on the method developed by Honda, which can be regarded as a generalization of the theory of Donaldson and Friedman.

本文言語English
ページ(範囲)323-336
ページ数14
ジャーナルCompositio Mathematica
122
3
DOI
出版ステータスPublished - 2000 7

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「On Some Twistor Spaces Over 4ℂℙ<sup>2</sup>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル