TY - JOUR
T1 - On some nonlinear dissipative equations with sub-critical nonlinearities
AU - Hayashi, Nakao
AU - Ito, Naoko
AU - Kaikina, Elena I.
AU - Naumkin, Pavel I.
PY - 2004
Y1 - 2004
N2 - We study the Cauchy problem for the nonlinear dissipative equations (1) {∂tu + α (-Δ)ρ/2 u + β|u| σ u + γ|u|x u = 0, x ∈ Rn,t > 0, u(0,x) = u0(x), x ∈ Rn, where α,β,γ ∈ C, Re a > 0, ρ > 0, x > σ > 0. We are interested in the critical case, σ = ρ/n and sub critical cases 0 < σ < ρ/n. We assume that the initial data u0 are sufficiently small hi a suiatble norm, |∫u0 (x) dx| > 0 and Reβδ(α,p,σ) > 0, where δ(αρ, σ) = ∫|G(x)|σ(x)dx and G (x) = ℱ-1e- α|ξ|ρ. In the sub critical case we assume that CT is close to ρ/n. Then we prove global existence in time of solutions to the Cauchy problem (1) satisfying the time decay estimate δ(α,ρ, σ) ∫|G(x)σ G(x)dx ||u(t)||L ∞ ≤{(C(1 +t)-1/σ(log(2+t)-1/σif σ = ρ/n, C (1+t)-1/σif σ ∈(0, ρ/n).
AB - We study the Cauchy problem for the nonlinear dissipative equations (1) {∂tu + α (-Δ)ρ/2 u + β|u| σ u + γ|u|x u = 0, x ∈ Rn,t > 0, u(0,x) = u0(x), x ∈ Rn, where α,β,γ ∈ C, Re a > 0, ρ > 0, x > σ > 0. We are interested in the critical case, σ = ρ/n and sub critical cases 0 < σ < ρ/n. We assume that the initial data u0 are sufficiently small hi a suiatble norm, |∫u0 (x) dx| > 0 and Reβδ(α,p,σ) > 0, where δ(αρ, σ) = ∫|G(x)|σ(x)dx and G (x) = ℱ-1e- α|ξ|ρ. In the sub critical case we assume that CT is close to ρ/n. Then we prove global existence in time of solutions to the Cauchy problem (1) satisfying the time decay estimate δ(α,ρ, σ) ∫|G(x)σ G(x)dx ||u(t)||L ∞ ≤{(C(1 +t)-1/σ(log(2+t)-1/σif σ = ρ/n, C (1+t)-1/σif σ ∈(0, ρ/n).
KW - Nonlinear dissipative equations
KW - Sub-critical nonlinearities
UR - http://www.scopus.com/inward/record.url?scp=8644239005&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=8644239005&partnerID=8YFLogxK
U2 - 10.11650/twjm/1500558462
DO - 10.11650/twjm/1500558462
M3 - Article
AN - SCOPUS:8644239005
VL - 8
SP - 135
EP - 154
JO - Taiwanese Journal of Mathematics
JF - Taiwanese Journal of Mathematics
SN - 1027-5487
IS - 1
ER -