On disconnected cuts and separators

Takehiro Ito, Marcin Kamiski, Danil Paulusma, Dimitrios M. Thilikos

研究成果: Article査読

9 被引用数 (Scopus)

抄録

For a connected graph G=(V,E), a subset U⊆V is called a disconnected cut if U disconnects the graph, and the subgraph induced by U is disconnected as well. A natural condition is to impose that for any u∈U, the subgraph induced by (V\U)∪u is connected. In that case, U is called a minimal disconnected cut. We show that the problem of testing whether a graph has a minimal disconnected cut is NP-complete. We also show that the problem of testing whether a graph has a disconnected cut separating two specified vertices, s and t, is NP-complete.

本文言語English
ページ(範囲)1345-1351
ページ数7
ジャーナルDiscrete Applied Mathematics
159
13
DOI
出版ステータスPublished - 2011 8 6

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「On disconnected cuts and separators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル