On commensurability of fibrations on a hyperbolic 3-manifold

Hidetoshi Masai

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We discuss fibered commensurability of fibrations on hyperbolic 3-manifolds, a notion introduced by Calegari, Sun, and Wang (Pacific J. Math. 250:2 (2011), 287-317). We construct manifolds with nonsymmetric but commensurable fibrations on the same fibered face, and prove that if a given manifoldM does not have hidden symmetries, thenM does not admit nonsymmetric but commensurable fibrations. It was also proved by Calegari et al that every hyperbolic fibered commensurability class contains a unique minimal element. Here we provide a detailed discussion on the proof of the theorem in the cusped case.

本文言語English
ページ(範囲)313-327
ページ数15
ジャーナルPacific Journal of Mathematics
266
2
DOI
出版ステータスPublished - 2013

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On commensurability of fibrations on a hyperbolic 3-manifold」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル